Custom deep learning processor


PFN is developing the MN-Core™ accelerator to speed up training of deep learning models. MN-Core is a dedicated accelerator optimized for matrix computations needed for deep learning, and is expected to achieve a world-class energy efficiency of 1 TFLOPS/W (half precision). By focusing on the functions required for deep learning, the dedicated chip can boost effective performance in deep learning as well as reduce costs.

We started operating MN-3, the first MN-Core-powered computer cluster with over 1,000 nodes, in May 2020 on a trial basis. Our goal is to increase MN-3’s calculation speed to 2 EFLOPS.


Optimized for the training phase in deep learning

Extremely densely integrated matrix arithmetic units

MN-Core-powered cluster MN-3 started operation in May 2020 on a trial basis

Learn more about this project

Other Projects


Contact us here.